61) Yus ES, del Cerro M, Simón RS, Herrera M, Rueda M. Unna"s and Miescher"s nevi: two different types of intradermal nevus: hypothesis concerning their histogenesis. AmJDermatopathol. 2007 Apr;29(2):141-51. doi: 10.1097/DAD.0b013e31803325b2. PMID: 17414435
62) WHO Classification of Skin Tumours (WHO Classification of Tumours) 4th Edition David E. Elder, Daniela Massi, Richard A. Scolyer, Rein Willemze (Editors) International Agency for Research on Cancer (IARC)Lyon, France, 2018
63) Roncati, L., F. Piscioli, and T. Pusiol, SAMPUS, MELTUMP and THIMUMP - Diagnostic Categories Characterized by Uncertain Biological Behavior. Klin Onkol, 2017. 30(3): p. 221-223
64) Shain AH, Joseph NM, Yu R, et al. Genomic and Transcriptomic Analysis Reveals Incremental Disruption of Key Signaling Pathways during Melanoma Evolution // Cancer Cell. 2018 Jul 9;34(1):45-55.e4. doi: 10.1016/j.ccell.2018.06.005
65) Shain AH, Yeh I, Kovalyshyn I, et al. The Genetic Evolution of Melanoma from Precursor Lesions // N Engl J Med. 2015 Nov 12;373(20):1926-36. doi: 10.1056/NEJMoa1502583
66) Tschandl P, Berghoff AS, Preusser M, et al. NRAS and BRAF mutations in melanoma-associated nevi and uninvolved nevi // PLoS One. 2013 Jul 8;8(7):e69639. doi: 10.1371/journal.pone.0069639
67) Larsen AC, Dahl C, Dahmcke C, et al. BRAF mutations in conjunctival melanoma: investigation of incidence, clinicopathological features, prognosis and paired premalignant lesions // Acta Ophthalmol. 2016 Aug;94(5):463-70. doi: 10.1111/aos.13007
68) Damsky WE, Bosenberg M. Melanocytic nevi and melanoma: unraveling a complex relationship // Oncogene. 2017 Oct 19;36(42):5771-5792. doi: 10.1038/onc.2017.189
69) Fan, Y., Lee, S., Wu, G., et al. Telomerase Expression by Aberrant Methylation of the TERT Promoter in Melanoma Arising in Giant Congenital Nevi // J Invest Dermatol. 2016 Jan;136(1):339-342. doi: 10.1038/JID.2015.374
70) Takata M, Murata H, Saida T. Molecular pathogenesis of malignant melanoma: a different perspective from the studies of melanocytic nevus and acral melanoma // Pigment Cell Melanoma Res. 2010 Feb;23(1):64-71. doi: 10.1111/j.1755-148X.2009.00645.x
71) Song J, Mooi WJ, Petronic-Rosic V, Shea CR, Stricker T, Krausz T. Nevus versus melanoma: to FISH, or not to FISH // Adv Anat Pathol. 2011 May;18(3):229-34. doi: 10.1097/PAP.0b013e3182169b69
72) Ferrara G, De Vanna AC. Fluorescence In Situ Hybridization for Melanoma Diagnosis: A Review and a Reappraisal // Am J Dermatopathol. 2016 Apr;38(4):253-69. doi: 10.1097/DAD.0000000000000380
73) Weissinger SE, Frick M, Möller P, et al. Performance Testing of RREB1, MYB, and CCND1 Fluorescence In Situ Hybridization in Spindle-Cell and Desmoplastic Melanoma Argues for a Two-Step Test Algorithm // Int J Surg Pathol. 2017 Apr;25(2):148-157. doi: 10.1177/1066896916680072
74) Yeh I, Jorgenson E, Shen L, et al. Targeted Genomic Profiling of Acral Melanoma // J Natl Cancer Inst. 2019 Oct 1;111(10):1068-1077. doi: 10.1093/jnci/djz005
75) Harms KL, Lowe L, Fullen DR, Harms PW. Atypical Spitz Tumors: A Diagnostic Challenge // Arch Pathol Lab Med. 2015 Oct;139(10):1263-70. doi: 10.5858/arpa.2015-0207-RA
76) Tetzlaff MT, Reuben A, Billings SD, et al. Toward a Molecular-Genetic Classification of Spitzoid Neoplasms // Clin Lab Med. 2017 Sep;37(3):431-448. doi: 10.1016/j.cll.2017.05.003
77) Lozada JR, Geyer FC, Selenica P, et al. Massively parallel sequencing analysis of benign melanocytic naevi // Histopathology. 2019 Jul;75(1):29-38. doi: 10.1111/his.13843
78) Redon S, Guibourg B, Talagas M, et al. A Diagnostic Algorithm Combining Immunohistochemistry and Molecular Cytogenetics to Diagnose Challenging Melanocytic Tumors // Appl Immunohistochem Mol Morphol. 2018 Nov/Dec;26(10):714-720. doi: 10.1097/PAI.0000000000000511
79) Cesinaro AM, Schirosi L, Bettelli S, et al. Alterations of 9p21 analysed by FISH and MLPA distinguish atypical spitzoid melanocytic tumours from conventional Spitz"s nevi but do not predict their biological behaviour // Histopathology. 2010 Oct;57(4):515-27. doi: 10.1111/j.1365-2559.2010.03653.x
80) Sini MC, Manca A, Cossu A, et al. Molecular alterations at chromosome 9p21 in melanocytic naevi and melanoma // Br J Dermatol. 2008 Feb;158(2):243-50. doi: 10.1111/j.1365-2133.2007.08310.x
81) Bogdan I, Smolle J, Kerl H, et al. Melanoma ex naevo: a study of the associated naevus // Melanoma Res. 2003 Apr;13(2):213-7. doi: 10.1097/01.cmr.0000056226.78713.99
82) Hodis E, Watson IR, Kryukov GV, et al. A landscape of driver mutations in melanoma // Cell. 2012 Jul 20;150(2):251-63. doi: 10.1016/j.cell.2012.06.024
83) Ko JS, Matharoo-Ball B, Billings SD, et al. Diagnostic Distinction of Malignant Melanoma and Benign Nevi by a Gene Expression Signature and Correlation to Clinical Outcomes // Cancer Epidemiol Biomarkers Prev. 2017 Jul;26(7):1107-1113. doi: 10.1158/1055-9965.EPI-16-0958
84) Clarke LE, Warf MB, Flake DD 2nd, et al. Clinical validation of a gene expression signature that differentiates benign nevi from malignant melanoma // J Cutan Pathol. 2015 Apr;42(4):244-52. doi: 10.1111/cup.12475
85) Clarke LE, Mabey B, Flake DD 2nd, et al. Clinical validity of a gene expression signature in diagnostically uncertain neoplasms // Per Med. 2020 Sep;17(5):361-371. doi: 10.2217/pme-2020-0048
86) Ferris LK, Gerami P, Skelsey MK, et al. Real-world performance and utility of a noninvasive gene expression assay to evaluate melanoma risk in pigmented lesions // Melanoma Res. 2018 Oct;28(5):478-482. doi: 10.1097/CMR.0000000000000478
87) Grushchak S, Gray AR, Joyce C, et al. The role of S100A9 in distinguishing malignant melanoma from dysplastic and common nevi // http://medcraveonline.com/JDC/JDC-01-00012.pdf