47. Mangum J.B., Turpin E.A., Antao-Menezes A. et al. Single-walled carbon nanotube (SWCNT)-induced interstitial fibrosis in the lungs of rats is associated with increased levels of PDGF мРНК and the formation of unique intercellular carbon structures that bridge alveolar macrophages in situ. // Part Fibre Toxicol. 2006. Vol.3. P.15.
48. Maynard A.D., Baron P.A., Foley M. et al. Exposure to carbon nanotube material: Aerosol release during the handling of unrefined single-walled carbon nanotube material. // J Toxicol Environ Health A. 2004. Vol. 67. P. 87-107.
49. Mercer R.R., Hubbs A.F., Scabilloni J.F. et al. Pulmonary fibrotic response to aspiration of multi-walled carbon nanotubes. // Particle and Fiber Toxicology. 2011. Vol. 8. P.21.
50. Mercer R.R., Scabilloni J., Wang L. et al. Alteration of deposition pattern and pulmonary response as a result of improved dispersion of aspirated single-walled carbon nanotubes in a mouse model. // Am J Physiol Lung Cell Mol Physiol. 2008. Vol. 294(1). P. 87-97.
51. Mercer R.R., Scabilloni J.F., Hubbs A.F. et al. Distribution and fibrotic response following inhalation exposure to multi-walled carbon nanotubes. // Part Fibre Toxicol. 2013. Vol. 10. P. 33
52. Methner M., Hodson L., Geraci C. Nanoparticle emission assessment technique (NEAT) for the identification and measurement of potential inhalation exposure to engineered nanomaterials-part A. // J Occup Environ Hyg. 2010. Vol. 7(3). P. 127-32.
53. Migliore L., Saracino D., Bonelli A., et al. Carbon nanotubes induce oxidative DNA damage in RAW 264,7 cells. // Environ Mol Mutagen. 2010. № 51(4). P. 294-303.
54. Mitchell L.A., Lauer F.T., Burchiel S.W., McDonald J.D. Mechanisms for how inhaled multiwalled carbon nanotubes suppress systemic immune function in mice. // Nat Nanotechnol. 2009. Vol.4(7). P.451-456.