только для медицинских специалистов

Консультант врача

Электронная медицинская библиотека

Раздел 28 / 28
Страница 142 / 157

Приложение. Списки литературы к главам

Внимание! Часть функций, например, копирование текста к себе в конспект, озвучивание и т.д. могут быть доступны только в режиме постраничного просмотра.Режим постраничного просмотра
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

64. Nygaard U.C., Hansen J.S., Samuelsen M. et al. Single-walled and multi-walled carbon nanotubes promote allergic immune responses in mice. // Toxicol Sci. 2009. Vol. 109(1). P. 113-123.

65. Ouyang B., Baxter C.S., Lam H.M. et al. Hypomethylation of dual specificity phosphatase 22 promoter correlates with duration of service in firefighters and is inducible by low-dose benzo[a]pyrene. // J Occup Environ Med. 2012. Vol. 54(7). P. 774-780

66. Palomäki J., Välimäki E., Sund J. et al. Long, needle-like carbon nanotubes and asbestos activate the NLRP3 inflammasome through a similar mechanism. // ACS Nano. 2011. Vol. 5(9). P. 6861-6870.

67. Pauluhn J. Multi-walled carbon nanotubes (Baytubes): approach for derivation of occupational exposure limit. // Regul Toxicol Pharmacol. 2010. Vol. 57(1). P. 78-89.

68. Poland C.A., Duffin R., Kinloch I. Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study. // Nat Nanotechnol. 2008. Vol. 3(7). P. 423-428.

69. Pope C.A. 3rd, Ezzati M., Dockery D.W. Fine-particulate air pollution and life expectancy in the United States. // N Engl J Med. 2009. Vol. 360(4). P.376-86.

70. Porter D.W., Hubbs A.F., Mercer R.R. et al. Mouse pulmonary dose- and time course-responses induced by exposure to multi-walled carbon nanotubes. // Toxicology. 2010. Vol.269(2-3). P.136-47.

71. Porter, A. E.; Gass, M.; Muller, K. et al. Direct imaging of single-walled carbon nanotubes in cells. // Nat. Nanotechnol. 2007. Vol. 2. P713-717

72. Powers C., Gift J., Lehmann G. Sparking Connections: Toward Better Linkages Between Research and Human Health Policy - An Example with Multiwalled Carbon Nanotubes // Toxicological sciences. 2014. Vol. 141(1). P. 6-17

73. Reference Methods for Measuring Airborne Man-Made Mineral Fibers. Environmental Health Series 4. Copenhagen:World Health Organization. 1985

74. Ryman-Rasmussen J.P., Cesta M.F., Brody A.R. et al. Inhaled carbon nanotubes reach the subpleural tissue in mice. // Nat Nanotechnol. 2009. Vol.4(11). P.747-751.

75. Saito N., Haniu H., Usui Yu., et al. Safe Clinical Use of Carbon Nanotubes as Innovative Biomaterials // Chem Rev. 2014. Vol. 114(11). P. 6040-6079.

76. Sargent L.M., Reynolds S.H., Castranova V. Potential pulmonary effects of engineered carbon nanotubes: in vitro genotoxic effects. // Nanotoxicology. 2010. P. 396-408.

77. Sargent L.M., Porter D.W., Staska L.M. et al. Promotion of lung adenocarcinoma following inhalation exposure to multi-walled carbon nanotube. // Part Fibre Toxicol. 2014. Vol. 11. P. 3

78. Sharma S.C., Sarkar S., Periyakaruppan A. et al. Single-walled carbon nanotube induces oxidative stress in rat lung epoithelial cells. // J Nanosci Nanotechnol. 2007. Vol. 7(7). P. 2466-2472.

79. Shields K.N., Cavallari J.M., Hun M.J. et al. Traffic-related air pollution exposures and changes in heart rate variability in Mexico City: a panel study. // Environ Health. 2013. Vol. 12. P. 7.

80. Shimizu K., Uchiyama A., Yamashita M. et al. Biomembrane damage caused by exposure to multi-walled carbon nanotubes. // J Toxicol Sci. 2013. Vol. 38(1). P. 7-12.

81. Shvedova A.A., Kisin E., Murray A.R. et al. Inhalation vs. aspiration of single-walled carbon nanotubes in C57BL/6 mice: inflammation, fibrosis, oxidative stress, and mutagenesis. // Am J Physiol Lung Cell Mol Physiol. 2008. Vol.295(4). P. 552-565.

82. Shvedova A.A., Tkach A.V., Kisin E.R. et al. Carbon Nanotubes Enhance Metastatic Growth of Lung Carcinoma via Up-Regulation of Myeloid-Derived Suppressor Cells. // Small. 2013. №9-10. P.1691-1695.