Справка
x
только для медицинских специалистов
Консультант врача
Электронная медицинская библиотека
Вход / регистрация
Каталог
В книге
Показать все
Расширенный поиск
К результату поиска
Меню
Библиотека
Все книги
Руководства
Рекомендации
Монографии
Основные учебники
Атласы
Пациентам
Фармакология
Образование
Модули
Расписание вебинаров
Прошедшие вебинары
Мероприятия
Мероприятия
Лекарства
Справочник
Раздел
13
/
15
Страница
16
/
17
Приложение 1. Deep Water
/
/
Внимание! Часть функций, например, копирование текста к себе в конспект, озвучивание и т.д. могут быть доступны только в режиме постраничного просмотра.
Для продолжения работы требуется
вход / регистрация
Скачать приложение
Машинное обучение с использованием библиотеки Н2О
Оглавление
Предисловие
Глава 1. Установка и начало работы
+
Глава 2. Импортирование и экспортирование данных
+
Глава 3. Наборы данных
+
Глава 4. Общие параметры моделей
+
Глава 5. Случайный лес
+
Глава 6. Градиентный бустинг
+
Глава 7. Линейные модели
+
Глава 8. Глубокое обучение (нейронные сети)
+
Глава 9. Обучение на неразмеченных данных
+
Глава 10. Все остальное
+
Глава 11. Эпилог
+
Приложение 1. Deep Water
-
Установка
Сборка из исходных кодов
Amazon Machine Image
Образ Docker
Примеры данных
Обзор библиотеки Deep Water
Глубокое обучение в библиотеке H2O
Современные тенденции в глубоком обучении
Почему нужно использовать Deep Water
Начало работы: набор данных MNIST
Бекенды
CPU и GPU
Классификация изображений
Данные
Параметры изображений
Предварительно созданные архитектуры
Архитектуры, создаваемые пользователем
Предварительно обученные нейросети
Веб-интерфейс Flow
Поиск по сетке
Полный перебор
Случайный поиск
Контрольные точки
Ансамбли
Признаки скрытых слоев и меры сходства
Поддержка нескольких GPU
Развертывание моделей
MOJO
Prediction Service Builder
Приложение 2. Ансамбли (стекинг моделей)
+
Краткий предметный указатель
Машинное обучение с использованием библиотеки Н2О
Оборот титула
Оглавление
Предисловие
Глава 1. Установка и начало работы
+
Глава 2. Импортирование и экспортирование данных
+
Глава 3. Наборы данных
+
Глава 4. Общие параметры моделей
+
Глава 5. Случайный лес
+
Глава 6. Градиентный бустинг
+
Глава 7. Линейные модели
+
Глава 8. Глубокое обучение (нейронные сети)
+
Глава 9. Обучение на неразмеченных данных
+
Глава 10. Все остальное
+
Глава 11. Эпилог
+
Приложение 1. Deep Water
-
Установка
Сборка из исходных кодов
Amazon Machine Image
Образ Docker
Примеры данных
Обзор библиотеки Deep Water
Глубокое обучение в библиотеке H2O
Современные тенденции в глубоком обучении
Почему нужно использовать Deep Water
Начало работы: набор данных MNIST
Бекенды
CPU и GPU
Классификация изображений
Данные
Параметры изображений
Предварительно созданные архитектуры
Архитектуры, создаваемые пользователем
Предварительно обученные нейросети
Веб-интерфейс Flow
Поиск по сетке
Полный перебор
Случайный поиск
Контрольные точки
Ансамбли
Признаки скрытых слоев и меры сходства
Поддержка нескольких GPU
Развертывание моделей
MOJO
Prediction Service Builder
Приложение 2. Ансамбли (стекинг моделей)
+
Краткий предметный указатель
Показать все
Все издания
Закрыть меню