только для медицинских специалистов

Консультант врача

Электронная медицинская библиотека

Раздел 3 / 10
Страница 8 / 92

Эпилепсия и эпилептический статус у взрослых и детей

Медиальная височная эпилепсия (МВЭ), наиболее часто встречающаяся форма эпилепсии, подразумевает эпилептический синдром, при котором судорожная активность возникает из височной доли при активном вовлечении гиппокампа. Именно на МВЭ сфокусирована существенная часть фундаментальных исследований патогенеза эпилепсии, которые включают в первую очередь изучение патологии и патофизиологии гиппокампа при эпилептогенезе [26]. Возможные механизмы отложенного эпилептогенеза активно обсуждаются в рамках нескольких гипотез. Одна из них, модель киндлинга, предполагает, что повторяющиеся субконвульсивные стимулы, приводящие к последующим электрическим разрядам (after discharges), могут в конце концов приводить к развитию спонтанных судорог (эпилепсии). Другая модель рассматривает патофизиологию и изменения сетей гиппокампа при эпилептогенезе. Эта модель непосредственно связана с эпилепсией височной доли, но может быть полезна и для понимания развития других типов эпилепсии. Следует учитывать, что гиппокамп, а именно его зубчатая извилина, является еще и нейрогенной нишей, в которой образование новых нейронов (нейрогенез) продолжается в течение всей жизни. Зубчатая извилина выполняет функцию привратника (фильтра); в норме тормозная иннервация гранулярных клеток доминирует над возбуждающей, что позволяет зубчатой извилине контролировать возбуждение, при этом иннервация тормозных ГАМК-ергических интернейронов гранулярными клетками по механизму отрицательной обратной связи контролирует возбудимость гиппокампа.

Установлено, что при эпилептогенезе существенно усилено образование новых нейронов в зубчатой извилине гиппокампа. Эпилептиформная активность возникает, когда зубчатая извилина не может выполнить свою функцию фильтра возбуждения. Причиной этого может быть формирование аберрантных нервных сетей за счет вызванной нарушенным нейрогенезом реорганизации связей между гранулярными клетками. Предполагается, что именно формирование рекуррентных возбуждающих связей в процессе эпилептогенеза нарушает функцию зубчатой извилины. При этом аномальная интеграция новорожденных гранулярных клеток в гиппокампальные сети происходит за счет прорастания аксонов мшистых волокон, прорастания базальных дендритов в хилус, где они образуют синаптические контакты с мшистыми волокнами, миграции гранулярных клеток в хилус с нарушением морфологии гранулярного слоя. Эти изменения нарушают функционирование гиппокампа, способствуя существованию проэпилептогенных нервных сетей. Нейродегенерация и снижение нейрогенеза гиппокампа являются одним из общих патогенетических механизмов, лежащих в основе эпилептогенеза. Как и при ряде других неврологических и психических заболеваний, эти события тесно связаны с дисрегуляцией нейротрофинов, в частности, нейротрофического фактора мозга (с англ. Brain Derived Neurotrophic Factor, BDNF) [545]. Предполагается, что при лимбическом эпилептогенезе усиленная экспрессия BDNF вносит ключевой вклад в аберрантный нейрогенез и спрутинг мшистых волокон гиппокампа, способствуя тем самым длительной потенциации возбуждающей синаптической трансмиссии [27, 28]. Важно отметить, что на долю МВЭ приходится существенная часть пациентов с фармакорезистентной эпилепсией, при этом фармакорезистентность является проявлением как общей тяжести заболевания, так и результатом глубокого дисбаланса между многокомпонентной эпилептической и противоэпилептической системами головного мозга. Возможно, в основе фармакорезистентности лежат врождeнные или приобретeнные изменения активности белков-транспортеров гематоэнцефалического барьера и/или чувствительность молекулярных мишеней противоэпилептических препаратов.

У пациентов с опухолями мозга за счет снижения перфузии в области опухоли и усиления метаболизма возникает гипоксия, вызывающая ацидоз и нарушения окислительного энергетического метаболизма, что приводит к набуханию клеток глии и повреждению окружающей ткани. Возникающий дисбаланс между возбуждением и торможением приводит к судорожной активности за счет повышенного внеклеточного уровня глутамата до нейротоксических значений. При глиоме эпилептическая активность возникает вне опухоли в районе околоопухолевой границы, где повышен уровень глутамата. Активность рецепторов ГАМК понижена, что также вносит вклад в развитие избыточного возбуждения [29].

Механизмы эпилептогенеза в результате ЧМТ сводятся к вопросу о причинах развития склонности к повторяющимся неспровоцированным судорожным приступам при отсутствии явных патологических провоцирующих факторов в позднем периоде ЧМТ. Первичные повреждения при ЧМТ включают в себя острую клеточную гибель, нарушение гематоэнцефалического барьера; они приводят к деполяризации нейронов, выбросу возбуждающих нейромедиаторов и повышению экстраклеточной концентрации К+, а в конечном итоге к гиперсинхронизации нейронов, что проявляется острыми судорожными приступами у животных и, вероятно, у человека [30]. К клеточной гибели приводит острый чрезмерный выброс глутамата и аспартата, вызывающий активацию NMDA-рецепторов, вход Na+ и Ca++ в клетку, выбросу K+, апоптоз и некроз нейронов в результате эксайтотоксичности [31]. Вторичное повреждение в результате ЧМТ связано с активацией процессов отложенной клеточной гибели, нейровоспаления, глио- и ангиогенеза. Многие из этих процессов вовлечены в эпилептогенез: гибель нейронов, глиоз, нейровоспаление, нарушение гематоэнцефалического барьера, нарушение возбудимости нейронов, нарушенные ангиогенез и нейрогенез, изменение синаптической пластичности, перестройка нейрональных сетей, изменения экспрессии генов и эпигенетические модификации [32]. Помимо формирования прямого очага повреждения в коре, ЧМТ приводит к дистантной и вторичной гибели нейронов и активации глии в гиппокампе [33], в первую очередь ГАМК-ергических вставочных нейронов хилуса [34]. Нейровоспаление после ЧМТ присутствует как в остром периоде, обусловливая отек и нейродегенерацию, так и в хроническом периоде [35]. Клеточный субстрат нейровоспаления в остром периоде в основном представлен микроглией, в хроническом большую роль играют астроциты. Синтезируемые иммунными клетками цитокины модифицируют функцию глутамат- и ГАМК-ергических рецепторов, ингибируют захват глутамата астроцитами, нарушают функцию потенциал-зависимых ионных каналов, ведут к повышению экстраклеточной концентрации К+, и все это формирует основу для нейронной гиперсинхронизации [25]. Дальнейшее прогрессирующие изменения в гиппокампе тесно связаны с изменениями нейропластичности: наблюдается спрутинг мшистых волокон в зубчатой извилине гиппокампа формируются новые возбуждающие синапсы на гранулярных клетках, что способствует большей дивергенции возбуждения в гиппокампе, а также самоактивации гранулярных клеток [36, 37]. В результате длительно протекающих структурных и метаболических изменений в гиппокампе в отдаленном периоде ЧМТ наблюдаются прогрессирующие по частоте и выраженности эпилептические приступы на фоне снижении порога возбудимости нейронов [38–40].